Characterizing the Fatty Acid Binding Site in the Cavity of Potassium Channel KcsA
نویسندگان
چکیده
We show that interactions of fatty acids with the central cavity of potassium channel KcsA can be characterized using the fluorescence probe 11-dansylaminoundecanoic acid (Dauda). The fluorescence emission spectrum of Dauda bound to KcsA in bilayers of dioleoylphosphatidylcholine contains three components, which can be attributed to KcsA-bound and lipid-bound Dauda together with unbound Dauda. The binding of Dauda to KcsA was characterized by a dissociation constant of 0.47 ± 0.10 μM with 0.94 ± 0.06 binding site per KcsA tetramer. Displacement of KcsA-bound Dauda by the tetrabutylammonium (TBA) ion confirmed that the Dauda binding site was in the central cavity of KcsA. Dissociation constants for a range of fatty acids were determined by displacement of Dauda: binding of fatty acids increased in strength with an increasing chain length from C14 to C20 but then decreased in strength from C20 to C22. Increasing the number of double bonds in the chain from one to four had little effect on binding, dissociation constants for oleic acid and arachidonic acid, for example, being 2.9 ± 0.2 and 3.0 ± 0.4 μM, respectively. Binding of TBA to KcsA was very slow, whereas binding of Dauda was fast, suggesting that TBA can enter the cavity only through an open channel whereas Dauda can bind to the closed channel, presumably entering the cavity via the lipid bilayer.
منابع مشابه
Multiple Binding Sites for Fatty Acids on the Potassium Channel KcsA
Interactions of fatty acids with the potassium channel KcsA were studied using Trp fluorescence quenching and electron paramagnetic resonance (EPR) techniques. The brominated analogue of oleic acid was shown to bind to annular sites on KcsA and to the nonannular sites at each protein-protein interface in the homotetrameric structure with binding constants relative to dioleoylphosphatidylcholine...
متن کاملStructures of KcsA in Complex with Symmetrical Quaternary Ammonium Compounds Reveal a Hydrophobic Binding Site
Potassium channels allow for the passive movement of potassium ions across the cell membrane and are instrumental in controlling the membrane potential in all cell types. Quaternary ammonium (QA) compounds block potassium channels and have long been used to study the functional and structural properties of these channels. Here we describe the interaction between three symmetrical hydrophobic QA...
متن کاملDiscovery and characterisation of a novel toxin from Dendroaspis angusticeps, named Tx7335, that activates the potassium channel KcsA.
Due to their central role in essential physiological processes, potassium channels are common targets for animal toxins. These toxins in turn are of great value as tools for studying channel function and as lead compounds for drug development. Here, we used a direct toxin pull-down assay with immobilised KcsA potassium channel to isolate a novel KcsA-binding toxin (called Tx7335) from eastern g...
متن کاملInteractions of anionic phospholipids and phosphatidylethanolamine with the potassium channel KcsA.
Fluorescence quenching methods have been used to study interactions of anionic phospholipids with the potassium channel KcsA from Streptomyces lividans. Quenching of the Trp fluorescence of KcsA reconstituted into mixtures of dioleoylphosphatidylcholine (DOPC) and an anionic phospholipid with dibromostearoyl chains is more marked at low mole fractions of the brominated anionic phospholipid than...
متن کاملAnionic phospholipid interactions with the potassium channel KcsA: simulation studies.
Molecular dynamics (MD) simulations have been used to unmask details of specific interactions of anionic phospholipids with intersubunit binding sites on the surface of the bacterial potassium channel KcsA. Crystallographic data on a diacyl glycerol fragment at this site were used to model phosphatidylethanolamine (PE), or phosphatidylglycerol (PG), or phosphatidic acid (PA) at the intersubunit...
متن کامل